Por favor, use este identificador para citar o enlazar este ítem:
http://biblioteca.cehum.org/handle/CEHUM2018/1454
Título : | Predicting vascular plant richness in a heterogeneous wetland using spectral and textural features and a random forest algorithm |
Autor : | Cabezas, Julián Galleguillos Torres, Mauricio Pérez Quezada, Jorge |
Palabras clave : | Chile Región X Investigación Biológica Datos Geográficos Teledetección Landsat NDVI Botánica Indicadores Ambientales Humedal Turbera |
Fecha de publicación : | may-2016 |
Editorial : | IEEE Geoscience and Remote Sensing Letters |
Resumen : | A method to predict vascular plant richness using spectral and textural variables in a heterogeneous wetland is presented. Plant richness was measured at 44 sampling plots in a 16-ha anthropogenic peatland. Several spectral indices, first-order statistics (median and standard deviation), and second-order statistics [metrics of a gray-level co-occurrence matrix (GLCM)] were extracted from a Landsat 8 Operational Land Imager image and a Pleiades 1B image. We selected the most important variables for predicting richness using recursive feature elimination and then built a model using random forest regression. The final model was based on only two textural variables obtained from the GLCM and derived from the Landsat 8 image. An accurate predictive capability was reported (R-2 = 0.6; RMSE = 1.99 species), highlighting the possibility of obtaining parsimonious models using textural variables. In addition, the results showed that the mid-resolution Landsat 8 image provided better predictors of richness than the high-resolution Pleiades image. This is the first study to generate a model for plant richness in a wetland ecosystem. |
URI : | http://biblioteca.cehum.org/handle/CEHUM2018/1454 |
ISSN : | 1545-598X |
Aparece en las colecciones: | Ciencias Naturales y Aplicadas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Cabezas, Galleguillos, Perez-Quezada. Predicting Vascular Plant Richness in a Heterogeneous Wetland Using Spectral and Textural Features and a Random Forest Algorithm.pdf | 127.46 kB | Adobe PDF | Visualizar/Abrir |