Por favor, use este identificador para citar o enlazar este ítem: http://biblioteca.cehum.org/handle/CEHUM2018/1454
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCabezas, Julián-
dc.contributor.authorGalleguillos Torres, Mauricio-
dc.contributor.authorPérez Quezada, Jorge-
dc.date.accessioned2019-04-21T17:43:22Z-
dc.date.available2019-04-21T17:43:22Z-
dc.date.issued2016-05-
dc.identifier.issn1545-598X-
dc.identifier.urihttp://biblioteca.cehum.org/handle/CEHUM2018/1454-
dc.description.abstractA method to predict vascular plant richness using spectral and textural variables in a heterogeneous wetland is presented. Plant richness was measured at 44 sampling plots in a 16-ha anthropogenic peatland. Several spectral indices, first-order statistics (median and standard deviation), and second-order statistics [metrics of a gray-level co-occurrence matrix (GLCM)] were extracted from a Landsat 8 Operational Land Imager image and a Pleiades 1B image. We selected the most important variables for predicting richness using recursive feature elimination and then built a model using random forest regression. The final model was based on only two textural variables obtained from the GLCM and derived from the Landsat 8 image. An accurate predictive capability was reported (R-2 = 0.6; RMSE = 1.99 species), highlighting the possibility of obtaining parsimonious models using textural variables. In addition, the results showed that the mid-resolution Landsat 8 image provided better predictors of richness than the high-resolution Pleiades image. This is the first study to generate a model for plant richness in a wetland ecosystem.es_ES
dc.language.isoenes_ES
dc.publisherIEEE Geoscience and Remote Sensing Letterses_ES
dc.subjectChilees_ES
dc.subjectRegión Xes_ES
dc.subjectInvestigación Biológicaes_ES
dc.subjectDatos Geográficoses_ES
dc.subjectTeledetecciónes_ES
dc.subjectLandsates_ES
dc.subjectNDVIes_ES
dc.subjectBotánicaes_ES
dc.subjectIndicadores Ambientaleses_ES
dc.subjectHumedales_ES
dc.subjectTurberaes_ES
dc.titlePredicting vascular plant richness in a heterogeneous wetland using spectral and textural features and a random forest algorithmes_ES
dc.typeArticlees_ES
Aparece en las colecciones: Ciencias Naturales y Aplicadas